ON THE FRONT OF YOUR BLUEBOOK write: (1) your name, (2) your student ID number, (3) lecture section (4) your instructor's name, and (5) a grading table. You must work all of the problems on the exam. Show ALL of your work in your bluebook and BOX IN YOUR FINAL ANSWERS. A correct answer with no relevant work may receive no credit, while an incorrect answer accompanied by some correct work may receive partial credit. Textbooks, classnotes, crib sheets, or calculators are not permitted.

1. (20 points) Let f be differentiable at every point in a closed, bounded interval $[a, b]$. Prove that if f^{\prime} is $1-1$ on $[a, b]$, then f^{\prime} is strictly monotone on $[a, b]$.
2. (40 points) Find all \mathcal{C}^{2} functions $f: \mathbf{R} \longrightarrow \mathbf{R}$ such that

$$
\exists \theta \in[0,1], \forall x \in \mathbf{R} \text { and } \forall h \in \mathbf{R}: \quad f(x+h)=f(x)+h f^{\prime}(x+\theta h)
$$

3. (20 points) Let $\left(x_{n}\right)$ be a sequence defined by

$$
\left\{\begin{array}{l}
x_{1}=\frac{1}{2} \\
x_{n+1}=x_{n}{ }^{2}+\frac{3}{16}
\end{array}\right.
$$

a. Show that $x_{n} \geq 0 ; \quad \forall n \in \mathbf{N}$
b. Show that $\left(x_{n}\right)$ is a decreasing sequence.
c. Deduce that $\left(x_{n}\right)$ is a convergent sequence and find its limit.
4. (30 points) Suppose that $f:[a, b] \longrightarrow \mathbf{R}$ is continuous and $f(a) \neq f(b)$. Prove that if p and q are two positive real numbers, then

$$
\exists c \in(a, b), \quad p f(a)+q f(b)=(p+q) f(c)
$$

5. (20 points) Suppose that $f:[0, \infty) \rightarrow \mathbf{R}$ is continuous and there is l such that $\lim _{x \rightarrow+\infty} f(x)=l$. Prove that f is uniformly continuous on $[0, \infty)$.
6. (20 points) Evaluate the following limits.
a. $\lim _{x \rightarrow 0} \frac{\sin \frac{1}{x}}{e^{\frac{1}{x}}+1}$
b. $\lim _{n \rightarrow \infty}\left(\frac{n}{n^{2}+1}+\frac{n}{n^{2}+2}+\frac{n}{n^{2}+3}+\cdots+\frac{n}{n^{2}+n}\right)$
c. $\lim _{x \rightarrow 0} \frac{\sin x \log \left(1+x^{2}\right)}{x \tan x}$
d. $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n+1}-\sqrt{n}}$
e. $\lim _{x \rightarrow \infty} x^{2}\left(e^{\frac{1}{x}}-e^{\frac{1}{x+1}}\right)$
f. $\lim _{x \rightarrow 0} x^{n} \sin \frac{1}{x^{2}} ; \quad n \geq 0$
7. (30 points) Consider the sequence $\left(x_{n}\right)$ such that $\forall n \in \mathbf{N}, x_{n}=(-1)^{n}$.
a. Using the definition, prove that $\left(x_{n}\right)$ is a divergent sequence.
b. Use an other method to establish the divergence of the sequence $\left(x_{n}\right)$.
8. (20 points) Let $f(x)=x^{2} e^{x^{2}} ; \quad x \in \mathbf{R}$.
a. Show that f^{-1} exists and is differentiable on $(0, \infty)$.
b. Compute $\left(f^{-1}\right)^{\prime}(e)$.
